PGC-Enriched miRNAs Control Germ Cell Development
نویسندگان
چکیده
Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.
منابع مشابه
Review of Differentiation and Proliferation of Primordial Germ Cells in Culture
Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...
متن کاملHigh-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration.
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole ...
متن کاملPiwi regulates Vasa accumulation during embryogenesis in the sea urchin.
BACKGROUND Piwi proteins are essential for germ line development, stem cell maintenance, and more recently found to function in epigenetic and somatic gene regulation. In the sea urchin Strongylocentrotus purpuratus, two Piwi proteins, Seawi and Piwi-like1, have been identified, yet their functional contributions have not been reported. RESULTS Here we found that Seawi protein was localized u...
متن کاملHow to make a human germ cell
How the primordial germ cell (PGC) lineage, which eventually gives rise to spermatozoa in males and oocytes in females, is established in the developing mammalian embryo has been a critical topic in both developmental and reproductive biology for many years. There have been significant breakthroughs over the past two decades in establishing both the source of PGCs and the factors that regulate ...
متن کاملPrimordial germ cell migration.
Mutational and antisense screens in Drosophila and zebrafish, and transcriptional profiling and time-lapse analysis in the mouse, have contributed greatly to our understanding of PGC development. In all three systems, the behavior of PGCs is controlled by growth factors which signal through G-protein coupled receptors and/or tyrosine kinase receptors. Additionally, regulated cell-cell and cell-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2015